US009122644B2

a2z United States Patent (10) Patent No.: US 9,122,644 B2
Kruglikov et al. 45) Date of Patent: Sep. 1, 2015
(54) COMMON USERS, COMMON ROLES, AND 7,822,717 B2 10/2010 Kappor et al.
COMMONLY GRANTED PRIVILEGES AND 2002%316142a8‘2‘§ ill 51;; %8 (1)3 IS(lm-TaItlgl
azar ¢t al.
ROLES IN CONTAINER DATABASES 2003/0061537 Al 3/2003 Cha et al.
(71) Applicant: ORACLE INTERNATIONAL %88‘5‘; 832;22? :} 1%; %88‘5‘]SEaStdet alf .
ouder et al.
CORPORATION, Redwood Shores, 2007/0100912 Al 5/2007 Pareek et al.
CA (US) 2007/0244918 Al 10/2007 Lee etal.
(72) Inventors: Andre Kruglikov, Atherton, CA (US); (Continued)
Kumar Rajamani, San Ramon, CA
(US); Jaebock Lee, Sunnyvale, CA OTHER PUBLICATIONS
(US); Sanket Jain, Sunnyvale, CA (US); . . .
Giridhar Ravipati, Foster City, CA Rajeev Kumar et al., Oracle DBA, A Helping Hand, Container Data-
base and Pluggable Database (CDB & PDB), retrieved from the
us) .
. . . internet on Dec. 4, 2013, 2 pages.
(73) Assignee: Oracle International Corporation, Preimesberger, Chris, “Oracle Profits Up, but Revenues Slip” Oracle,
Redwood Shores, CA (US) dated Sep. 20, 2012, 2 pages.
® - Dominic Betts et al., “Developing Multi-Tenant Applications for the
(*) Notice: SubJeCt. to any (?;S(Cilalmeé,. the Eermefﬂ;l; Cloud,” 3™ Edition, Microsoft, 2012, 246 pages.
patent 1s extended or adjusted under Muhammad Anwar, “How to Install Oracle 12¢ Multitenant Plug-
U.S.C. 154(b) by 223 days. gable Database”, Dated Feb. 24, 2012, 27 pages.
(21) Appl. No.: 13/841,272 (Continued)
(22) Filed: Mar. 15,2013
(65) Prior Publication Data Primary Examiner — Wilson Lee
US 2014/0095546 A1 Apr. 3, 2014 (7.4) Attorney, Agent, or Firm — Hickman Palermo Becker
Bingham LLP
Related U.S. Application Data
(60) Provisional application No. 61/707,726, filed on Sep. 57 ABSTRACT
28, 2012.
’ Techniques for common users and roles, and commonly-
(51) Int.CL granted privileges and roles are described. In one approach,
GO6F 17/30 (2006.01) the DBMS of a container database allows for the creation of
GO6F 11/14 (2006.01) common roles and common users that are shared across the
GO6F 21/62 (2013.01) container database. Thus, when a common role or a common
(52) US.CL user is established, the common role or common user is
CPC ... GO6F 11/1471 (2013.01); GO6F 17/30566 propagated to each database of the container database. In
(2013.01); GO6F 21/6218 (2013.01) another approach, the DBMS of a container database allows
(58) Field of Classification Search privileges and roles to be granted commonly or locally. When
None a privilege or role is granted commonly, the privilege applies
See application file for complete search history. in each of the databases of a container database. When a
privilege or role is granted locally, the privilege applies only
(56) References Cited in the database to which the grantor of the privilege or role

U.S. PATENT DOCUMENTS

6,804,671 Bl 10/2004 Loaiza et al.

established a connection.

20 Claims, 6 Drawing Sheets

iContainer DBMS 200

Databases _sys 203
Pluggabe DB [Dictionary
Store

PDA PDA.DBDIC
PDB PDB.DBDIC

DATABASE DICTIONARY.

US 9,122,644 B2
Page 2

(56)

2010/0318570
2011/0004586
2011/0060724
2011/0087633
2011/0307450
2011/0314035
2012/0075648
2012/0109926
2013/0085742
2013/0117237
2013/0198824
2013/0212068
2014/0095452
2014/0095530
2014/0164331
2014/0222824

References Cited

U.S. PATENT DOCUMENTS

Al 12/2010 Narasinghanallur et al.
Al 1/2011 Cherryholmes et al.

Al 3/2011 Chan
Al 4/2011 Kreuder et al.

Al 12/2011 Hahnetal.
Al* 12/2011 Brunetetal. ... 707/756
Al* 3/2012 Keysetal ... 358/1.11

Al 5/2012 Novik et al.
Al 4/2013 Barker et al.
Al 5/2013 Thomsen et al.

Al* 82013 Hitchcock etal. 726/6

Al 8/2013 Talius et al.
Al 4/2014 Lee et al.
Al 4/2014 Lee et al.
Al 6/2014 Li et al.

Al* 82014 Joshietal. 707/741

OTHER PUBLICATIONS

Oracle Base, Multitenant: Create and Configure a Pluggable Data-
base (PDB) In Oracle Database 12¢ Release 1 (12.1), dated Jan. 8,
2014, 16 pages.

Garcia-Molina et al., “Database System Implementation”, dated Jan.
1, 2000, 84 pages.

Francisco Munoz et al., “Oracle Database 12¢ Backup and Recovery
Survival Guide”, dated Sep. 24, 2013, 8 pages.

Dasetal., “Albatross: Lightweight Elasticity in Shared Storage Data-
bases for the Cloud Using Live Data Migration”, Proceedings of the
VLDB Endowment, vol. 4 No. 8 Copyright, dated 2011, 12 pages.
Anonymous: “Oracle-Base—Multitenant: Overview of Container
Databases (CDB) and Pluggable Databases (PDB)”, dated Mar. 3,
2014, 4 pages.

Anonymous,:An Oracle White Paper Oracle Database Appliance:
Migration Strategies, dated Jun. 2012, 14 pages.

* cited by examiner

US 9,122,644 B2

Sheet 1 of 6

Sep. 1, 2015

U.S. Patent

l Ol

901 sa|i4 eoedsajqe]

8
i
v

‘

4

A

N

»

O YRR Sy A

] end

€aHOMSSVd - AlHdD DYoS
2aHOMSSYd | 310449 Alddg auos
IAHOMSSYd | 3104V AlddY vuos
saINquUNY
19010 piomssed $9|0Y safa|ialg aweN Jasn
101 sAs Jasq
AlddH 37042
1d3avues| 3IWvNa
AHdZ AHdA| 310v4
AHdD'AYdd| 3704Y dN3'YUOS ANYNS
saINqUNY oI oW 2oH dNI'VUIS JNVYNT
1BUlo Y soINquUNY sIqe aueN
_ 12410 1qeL uwnjon
20} sAs 9|0y
¥#01 sAs uwnjon
. diNTauds | SdAT SL
, 0 —
S S e vyos | 1d3aa
-. 1d3a'vuos| L1d3a S |4 <Hmw e
.. dAT'VUIS | 2dNT S La- oGl ey
B —, & 4
. E— EERV Em_\”_:m_mzm.r 1800 BWSYOS | 5 e
19410 199[q0 aoedsa|qe _
z0} sAs"a|qeL
60| sAs aoedsa|qe]
............................... ayos
e m vuos
AAYYNOILOIQ 3Svaviva ¢ saingquny sweN
: LT BWaYIS
Jdiagavad : €01 sAs"ewayds
EQIE :

US 9,122,644 B2

Sheet 2 of 6

Sep. 1, 2015

U.S. Patent

¢ 914
wess b | e wess § | Weg
PRl [i SRR ospR] [SSEERd]
.................................. {OEZOH | O
m_momamw_ﬁ_. mmum%%m._.
_ 6__n_|m 4 _ g 4
b [EZRBOP0 SRR — | b ssREbpn R »
N J —
F v 21agavad
|0/ eseqeR] SI0E0tNK pees| il I R L PE e
||||||| —H -d —|
 GzEdesgeEgegbng LI OO eseR] opeing:
.............. iTT¢ AHYNOILOId 3Svaviva |
g&:ﬁ_ ! m
soedsorel. | _ m
m _ _ oladadad m_m_;n_ _
Do [T e :
" " m 0l0g9a'vad vad :
- ,|1_ m 21018 alweN m
! Areuonoig gq eqebbn|d m
c0z shks saseqerieqg :
... Q1 S50 P2 002 SINEQ Jouieuod;

US 9,122,644 B2

Sheet 3 of 6

Sep. 1, 2015

U.S. Patent

€

"9l 4

NOISS3S ISVAVYLVA JHL HO4 AYVYNOILIId
V1vQa Sy 3Svav.ivd ad14ILN3Al 40 AYVYNOILIIA Y1Ya HSITav1S3

3ASVavLva H3ANIVINOD
JHL 40 3SvAvLva ¥V S3I4ILNIAI LSINDIY NOILOINNOD ININYILI]

H3ISN WOY4 LSINVIY NOILOINNOD JAIFIFY

oe

NOISS3S 3SvdvL1vd HSITav.LSd

US 9,122,644 B2

Sheet 4 of 6

Sep. 1, 2015

U.S. Patent

¥ " 9Ol 4

S3SVavLva 31avooN1d IHL 0L ¥3SN NOWWOD I1vOVdOud

3Svav.Lvd LOOY FHL NIHLIM 438N NOWIWOD 31v3HO

H3ISN NOWWOD ¥V ONILYIYD ¥3SN IHL WOH4 ANVIWNOD FAIFDIY

d3SN vV 04 3SvdavLlvad LOOY OL NOILOINNOD HSITav1ss

US 9,122,644 B2

Sheet 5 of 6

Sep. 1, 2015

U.S. Patent

1

"9l 4

S3Svav.Lvd 378v99NT1d IHL 01 3104 NOWWOD F1v¥9vYdOud

3SvEavLlva LOOY FHL NIHLIM 3709 NOWWOD J1V3d0

3704 NOWWOD V ONILYIHD ¥3SN FHL WO¥4 ANYWWOD JAIFOTY

H3SN V 04 3Svav.Lyd LOOY OL NOILOINNOD HSINgvLss

US 9,122,644 B2

Sheet 6 of 6

Sep. 1, 2015

U.S. Patent

¥29
1SOH

AHOMLAN

o0

829

13NY3LN

09
d3ANY3S

919
TOY1INOD
d0SHND

009
819
JOVAYILNI ¥09
NOILYDINNIAINOD ¥0SSID0Yd
f
f
f
f
f
f
| 209
| sng
f
f
f
f
f
| ow 509 309
| 301A30 AHOWIW
” J9VH0LS WOy NIVIV

¥19
30I1A3A LNdN

4%
AY1dSId

9 'Ol

US 9,122,644 B2

1
COMMON USERS, COMMON ROLES, AND
COMMONLY GRANTED PRIVILEGES AND
ROLES IN CONTAINER DATABASES

CROSS-REFERENCE TO RELATED
APPLICATIONS; BENEFIT CLAIM

This application claims priority to U.S. Provisional Appli-
cation No. 61/707,726, entitled CONTAINER DATABASE,
filed on Sep. 28, 2012 by J. William Lee, et. al., the contents
of which are incorporated herein by reference. The applica-
tion is related to U.S. Non-provisional application Ser. No.
13/631,815, entitled CONTAINER DATABASE, filed on
Sep. 28,2012 by J. William Lee, et. Al, the contents of which
are hereby incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to common users, common
roles, and commonly granted privileges and roles in container
databases.

BACKGROUND
Database Systems

A database management system (DBMS) manages a data-
base. A DBMS may comprise one or more database servers.
A database comprises database data and a database dictionary
that are stored on a persistent memory mechanism, such as a
set of hard disks. Database data may be stored in one or more
data containers. Each container contains records. The data
within each record is organized into one or more fields. In
relational DBMSs, the data containers are referred to as
tables, the records are referred to as rows, and the fields are
referred to as columns. In object-oriented databases, the data
containers are referred to as object classes, the records are
referred to as objects, and the fields are referred to as
attributes. Other database architectures may use other termi-
nology.

Users interact with a database server of a DBMS by sub-
mitting to the database server commands that cause the data-
base server to perform operations on data stored in a database.
A user may be one or more applications running on a client
computer that interact with a database server. Multiple users
may also be referred to herein collectively as a user.

A database command may be in the form of a database
statement that conforms to a database language. A database
language for expressing the database commands is the Struc-
tured Query Language (SQL). There are many different ver-
sions of SQL, some versions are standard and some propri-
etary, and there are a variety of extensions. Data definition
language (“DDL”) commands are issued to a database server
to create or configure database objects, such as tables, views,
or complex data types. SQL/XML is a common extension of
SQL used when manipulating XML data in an object-rela-
tional database.

A multi-node database management system is made up of
interconnected nodes that share access to the same database.
Typically, the nodes are interconnected via a network and
share access, in varying degrees, to shared storage, e.g. shared
access to a set of disk drives and data blocks stored thereon.
The nodes in a multi-node database system may be in the form
of a group of computers (e.g. work stations, personal com-
puters) that are interconnected via a network. Alternately, the

20

25

30

45

55

2

nodes may be the nodes of a grid, which is composed of nodes
in the form of server blades interconnected with other server
blades on a rack.

Each node in a multi-node database system hosts a data-
base server. A server, such as a database server, is a combi-
nation of integrated software components and an allocation of
computational resources, such as memory, a node, and pro-
cesses on the node for executing the integrated software com-
ponents on a processor, the combination of the software and
computational resources being dedicated to performing a par-
ticular function on behalf of one or more clients.

Resources from multiple nodes in a multi-node database
system can be allocated to running a particular database serv-
er’s software. Each combination of the software and alloca-
tion of resources from a node is a server that is referred to
herein as a “server instance” or “instance”. A database server
may comprise multiple database instances, some or all of
which are running on separate computers, including separate
server blades.

Database Consolidation

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Database consolidation involves distributing and sharing
computer resources of a hardware platform among multiple
databases. Important objectives of database consolidation
include isolation, transportability, and fast provisioning. Iso-
lation is the ability to limit an application’s access to the
appropriate database; an application is permitted access to a
database while other applications are prevented access.

Users, Privileges, and Roles

For security purposes, DBMSs often maintain a list of valid
database users. To access a database, a user typically connects
to a database server instance and provides a username and
password. The database server then checks the user name and
password against the list of valid users defined in the database
to determine whether to grant the user access.

In some cases, DBMSs allow the resources available to
each user of the database to be customized. The right to access
a particular resource of the database will be referred to as a
privilege. For example, a privilege may represent the right to
execute a particular type of database command or the right to
access a particular database object.

For convenience, some DBMSs allow multiple privileges
to be bundled into a package referred to as a role. Thus, when
a user is granted a role, the user obtains all the privileges
associated with the role. For example, the database may
define a role associated with high ranking users that includes
nearly all available privileges, such as the ability to assign
privileges to other users, create and modify database objects,
etc. In addition, the database may define a role associated with
low-ranking users, which may possess some privileges, such
as the ability to connect with the database and perform que-
ries, but lack other privileges such as the right to modify
database objects.

Often, DBMSs are installed by default with an administra-
tor that possesses global access to the databases resources.
The administrator then creates the other users and assigns
roles and privileges.

US 9,122,644 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 11is adiagram depicting a database dictionary accord-
ing to an embodiment.

FIG. 2 is a diagram depicting a container database accord-
ing to an embodiment.

FIG. 3 depicts a procedure comprising steps that are per-
formed particularly for establishing a database session for a
database in a container database.

FIG. 4 is a flowchart showing operations performed for
establishing a common user in a container database, accord-
ing to an embodiment.

FIG. 5 is a flowchart showing operations performed for
establishing a common role in a container database, accord-
ing to an embodiment.

FIG. 6 is a diagram depicting a computer system that may
be used in an embodiment of the present invention.

DETAILED DESCRIPTION

In the following description, for the purpose of explana-
tion, numerous specific details are set forth in orderto provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

General Overview

Described herein are approaches to managing users, privi-
leges, and roles on a container database. The container data-
base may contain multiple separate databases. Each database
is defined by its own separate database dictionary.

A database dictionary comprises metadata that defines
database objects contained in a database. In effect, a database
dictionary defines the totality of a database. Database objects
include tables, table columns, and tablespaces. A tablespace
is a set of one or more files that are used to store the data for
various types of database objects, such as a table. If data for a
database objectis stored in a tablespace, a database dictionary
maps a database object to one or more tablespaces that hold
the data for the database object. In addition, the database
dictionary defines the users and roles of a database, in addi-
tion to the privileges granted to each of the users and roles.

A database dictionary is referred to by a DBMS to deter-
mine how to execute database commands submitted to a
DBMS. Database commands can access the database objects
that are defined by the dictionary.

A container database may contain multiple database dic-
tionaries for each database, each such database dictionary
defining the database. When database sessions are established
on a container database, each database session is given access
to a database by establishing the respective database dictio-
nary of the database as the database dictionary for that data-
base session. Database commands issued through the data-
base session can only access the database objects defined in
the database dictionary established for the database session.

Managing users, roles, and the privileges granted to users
and roles across all the databases in a container database can
be adaunting task. For example, auser may require the ability
to establish a session on any database in the container data-
base. Thus, an administrator setting up the user’s account may
wind up establishing a session to each database and setting up
the user’s account individually. Furthermore, should the
user’s information need to be changed (e.g. a routine chang-
ing of the user’s password), the administrator may find them-

10

15

20

25

30

35

40

45

50

55

60

65

4

selves logging into each database to perform the necessary
modifications. In scenarios where the container database con-
tains a large number of databases, this task may be extremely
time-consuming. The same issue also applies to roles, when
the administrator wants to keep roles consistent throughout
the container database.

In an embodiment, the DBMS allows for the creation of
common roles and common users that are shared across the
container database. Thus, when a common role or a common
user is established, the common role or common user is
propagated to each database of the container database. For
example, the DBMS may establish a root database as the
origin point for common users and roles. Thus, to create a
common user or role, an administrator or other privileged user
creates a session to the root database and creates the common
user or role. The changes to the database dictionary of the root
database performed as a result of creating the common user or
role are then propagated to the other databases in the con-
tainer database. Furthermore, in the event that a common user
or role is modified or removed at the root database, those
changes are also propagated to the other databases. As a
result, an administrator can maintain users and roles across
the container database without setting up the users and roles
separately on each database.

Furthermore, in some embodiments, the DBMS of a con-
tainer database allows privileges and roles to be granted com-
monly or locally. When a privilege is granted commonly, the
privilege applies in each of the databases of a container data-
base. When a privilege is granted locally, the privilege applies
only in the database to which the grantor of the privilege
established a connection. Similarly, when a role is granted
commonly, the role is granted in each of the databases of the
container database. When a role is granted locally, the role is
granted only in the database to which the grantor of the role
established a connection.

Database Dictionary and Database Data Storage

As indicated earlier, the database dictionary is central to a
DBMS’s management of a database. The database dictionary
contains metadata that defines database objects physically or
logically contained in the database. Database objects include
tables, columns, data types, users, privileges, roles, and stor-
age structures used for storing database object data. The data-
base dictionary is modified according to DDL commands
issued to add, modify, or delete database objects.

FIG. 1 depicts a Database Dictionary 101. For purposes of
exposition, only some aspects of Database Dictionary 101
and data structures contained therein are depicted in FIG. 1.
Database dictionary 101 includes Table_sys 102, Schema_
sys 103, Column_sys 104, Tablespace_sys 105, User_sys
107, and Role_sys 108.

Table_sys 102 is a table that contains metadata that defines,
at least in part, tables within a database. Table_sys 102 com-
prises (1) records that each define a table, and (2) attributes,
each of which describe an aspect or property of a table.
Among such attributes are Table Name and Schema. Table_
sys 102 contains other attributes not specifically depicted in
FIG. 1. Table Name is a name or label for a table, and Schema
is the schema to which the table belongs. A schema is a
defined and/or labeled set of database objects. One record in
Table_sys 102 defines a table as having the name EMP and
belonging to schema SchA. Another record defines a table as
having the name DEPT and belonging to schema SchA. A
third record in Table_sys 102 defines another table also as
having the name EMP, but belonging to schema SchB.

Schema_sys 103 defines schemas. Schema_sys 103 has
attribute Schema Name as well as other attributes. One record

US 9,122,644 B2

5

in Schema_sys 103 defines a schema having the name SchA;
another record defines a schema having the name SchB.

Column_sys 104 is a table containing metadata defining
column database objects. Column_sys 104 has attributes Col-
umn Name and Table, among other attributes. Column Name
is a name or label for a column, and Table identifies a table to
which a column belongs.

Tablespace_sys 105 is a table defining tablespaces. A
tablespace is set of one or more files, or one or more portions
of a file, or combination thereof, that is used to store data for
database objects, such as data for atable or index. Each record
in Tablespace_sys 105 defines a tablespace. Attributes of
Tablespace_sys 105 each describes an aspect or property of a
tablespace. The attribute Tablespace Name is a name or label
for a tablespace. Attribute Object identifies a database object
for which a tablespace stores data. Attribute File specifies one
or more files that are in a tablespace. One record in
Tablespace_sys 105 defines a tablespace as having the name
TS_EMP1 and being used to store table EMP in schema
SchA, as specified by the Object attribute value of
SchA.EMP. Another record in Tablespace_sys 105 defines a
tablespace as having the name TS_DEPT1 and being used to
store data for table DEPT in schema SchA, as specified by the
Object attribute value of SchA.EMP. Yet another record in
Tablespace_sys 105 defines a tablespace as having the name
TS_EMP4 and being used to store table EMP in schema
SchB, as specified by the Object attribute value of SchB.EMP.

User_sys 107 is a table containing metadata defining users
of'the database. Each record in User_sys 107 defines a user’s
name, privileges, roles, and password, among other attributes.
In one record, user SchA is shown as being assigned privilege
APRIV, role AROLE, and password PASSWORD1.

For convenience, the embodiment illustrated by FIG. 1
assumes each user owns only one schema, which is named
after the user. However, in other embodiments, users may
own multiple schema and User_sys 107 may contain an addi-
tional attribute that specifies the schemas owned by each user.
When a user “owns” a schema, the user will be assumed to
possess certain privileges associated with the schema by
default, such as the right to modify the schema and the data-
base objects defined by the schema. The privileges of owning
a schema may also include the right to grant those privileges
to other users. However, in other embodiments, an adminis-
trator may explicitly grant the aforementioned privileges to
the users, rather than the privileges inuring automatically as a
result of owning the schema.

In some embodiments, certain information in User_sys
107 may be encrypted for security reasons, such as the Pass-
word attribute. In some embodiments, the Password attribute
may instead store an encryption key, biometrics, or any other
information that can be used to verify the identity of the user.

Role_sys 108 is a table containing metadata defining vari-
ous roles of the database. In one record, Role AROLE is
depicted as possessing both the privileges BPRIV and
CPRIV. Thus, user SchA which has been assigned the role
AROLE effectively possesses privileges BPRIV and CPRIV
in addition to the privilege APRIV.

Database Dictionary 101 is expositive and illustrative of a
database dictionary but not limiting. For example, a database
dictionary may have more tables and attributes than those
depicted for Database Dictionary 101. In addition, although
Database Dictionary 101 depicts the users and roles being
assigned a particular number of privileges, other embodi-
ments may assign any number of privileges to users and roles.
Furthermore, data structures of a database dictionary are not
limited to tables, such as the tables depicted in FIG. 1

10

15

20

25

30

35

40

45

50

55

60

65

6

Storage of Database Dictionary Metadata

Metadata for a database dictionary is stored persistently in
a dictionary store. A dictionary store may be, without limita-
tion, one or more files, including a tablespace’s file. When a
database server is running, the database dictionary comprises,
atleast in part, one or more data structures in volatile memory
(“in-memory data structures”) that store at least a portion of
metadata that is in the dictionary store. Such in-memory data
structures are created and populated with metadata from a
dictionary store when, for example, initializing a database
server or instance for operation. Examples of in-memory data
structures include tables depicted earlier, such Column_sys
104 and Table_sys 102.

Once the in-memory data structures are populated, the
metadata in the in-memory data structures may be quickly
accessed by database operations that require the use of a
database dictionary, such as query evaluation. Populating the
in-memory data structures is referred to herein as loading the
database dictionary.

Namespace

A namespace is a domain in which names or labels of
objects of a particular type must be unique for objects of that
type. Database Dictionary 101 includes several different
namespaces.

One such namespace is the namespace for a table. The
namespace for a table is bounded by a schema. A name of a
table is unique between names of other tables belonging to the
schema. The namespace for a column is bounded by a table.
A column name is unique among other columns names for a
table.

For a schema and a tablespace, the namespace is bounded
by a database, as defined by Database Dictionary 101. A name
of a schema is unique between names of other schemas
defined by Database Dictionary 101. A name of a tablespace
is unique between names of other tablespaces defined by
Database Dictionary 101. Note that even though tablespaces
TS_EMP1, TS_EMP2, TS_EMP3, TS_EMP4, TS_EMPS5
store data for tables named EMP, the tablespaces’s
namespace require that the tablespaces have unique names.
Container Database

FIG. 2 depicts a Container DBMS 200, a container DBMS
according to an embodiment of the present invention. Con-
tainer DBMS 200 contains multiple databases that are hosted
and managed by a database server. The databases include
Pluggable Database PDA 220 and Pluggable Database PDB
230, and Root Database 210, which is associated with Plug-
gable Database PDA 220 and Pluggable Database PDB 230,
as shall be explained in greater detail. Pluggable databases
and the associated root database, such as Pluggable Database
PDA 220, Pluggable Database PDB 230 and Root Database
210, are collectively referred to herein as a container data-
base. A container DBMS may contain more pluggable data-
bases than the number of pluggable databases that are
depicted in FIG. 2. Root Database 210 is a database used to
globally manage the container database and to store metadata
and/or data for “common database objects” that are acces-
sible to users of multiple pluggable databases.

Referring to FIG. 2, Pluggable Database PDA 220 includes
Database Dictionary 221. Data for database objects of Plug-
gable Database PDA 220 is stored in Tablespace Files 226.
Similar to user data, metadata for a database dictionary is
stored persistently in a dictionary store. Metadata contained
in Database Dictionary 221 is stored in file PDA.DBDIC.

Pluggable Database PDB 230 includes Database Dictio-
nary 231. Tablespace Files 236 store data for database objects
of Pluggable Database PDB 230. Metadata for a Database
Dictionary 231 is stored persistently in file PDB.DBDIC.

US 9,122,644 B2

7

A database dictionary of the pluggable database may be
referred to herein as a pluggable database dictionary. A data-
base object defined by a pluggable database dictionary that is
not a common database object is referred to herein as a local
object.

Database Session

A user may access a database within Container DBMS 200
by establishing the respective database dictionary of the data-
base as a database dictionary for the database session. Once
the database dictionary is established as the database dictio-
nary of the session, access is isolated to the database objects
of the database, and to common database objects of the root
database, as shall be described in further detail. A database
dictionary is established for a database session by a database
server in response to a connection request from the user for
the database. Establishing the database dictionary as a data-
base dictionary for a database session may be referred to
herein as attaching the database dictionary. A session may be
created to any the pluggable databases or the Root Database
210.

With respect to the database objects in one or more data-
bases of a container database, execution of database com-
mands issued to a database session attached to a database
dictionary can only access database objects that are defined
by the database dictionary. Consequently, users of the data-
base session can only access database objects that are defined
by the attached database dictionary, thereby isolating data-
base access to database objects to those in the respective
database. This isolation not only applies to end users but may
also to administrators of the container database.

For example, in response to a connection request for access
to Pluggable Database PDA 220, Database Dictionary 221 is
attached to the database session. Database commands issued
in the database session are executed against Database Dictio-
nary 221. Access to pluggable database objects through DML
commands issued in the database session is isolated to plug-
gable database objects defined by Database Dictionary 221.
Isolation by concurrently executing database sessions with
Pluggable Database PDA or Pluggable Database PDB is
achieved in the same manner.

Root Database

Root Database 210 is a database used to globally manage
Container DBMS 200. An important function facilitated by
Root Database 210 is to define pluggable databases within
Container DBMS 200. Similar to pluggable databases, Root
Database 210 includes Database Dictionary 211. The data-
base dictionary of a root database may be referred to herein as
a root database dictionary. Database Dictionary 211 contains
metadata that defines various aspects of Container DBMS
200 needed to administer Container DBMS 200 and the data-
bases contained therein. Data for database objects defined by
Database Dictionary 211 is stored in Tablespace Files 216.

Database Dictionary 211 includes Database_sys 203.
Database_sys 203 defines pluggable databases within Con-
tainer DBMS 200. Attributes of Database_sys 203 each
describes an aspect or property of a pluggable database. The
attribute Pluggable DB is a name or label for a pluggable
database. The attribute Dictionary Store identifies a dictio-
nary store that holds metadata in a database dictionary. One
record in Database Dictionary 211 defines Pluggable Data-
base PDA 220 and its dictionary store file PDA.DBIDC.
Another record in Database Dictionary 211 defines Pluggable
Database PDB 220 and its dictionary store PDB.DBIDC.

In an embodiment, the Database Dictionary 211 defines
common database objects that are in effect shared by plug-
gable databases in Container DBMS 200. A common data-
base object is defined in a pluggable database dictionary,

10

15

20

25

30

35

40

45

50

55

60

65

8

which includes a reference to the common database object in
the respective root database dictionary. Examples of common
database objects include vendor or user supplied functions,
tables, and views.

According to an embodiment, there are two types of com-
mon database objects: a metadata-linked object and an
object-linked object. For both, metadata for the common
database object is stored in the Root Database. However, for
a metadata-linked object, data for the common database
object, if any, is stored in a pluggable database. Thus, for a
metadata-linked object, different pluggable databases may
store different data for the same common database object. For
an object-linked object, both the metadata and data for the
database object, if any, are stored in the root database. Data
for this type of common database object is the same for all
pluggable databases in a container database.

Seed Pluggable Database 290 contains database objects
and a database dictionary. Seed Pluggable Database 290 is
used to rapidly create a nascent pluggable database, and
facilitates fast provisioning of such pluggable databases.
Seed Pluggable Database 290 contains a basic set of database
objects that are frequently needed and/or used. For example,
Seed Pluggable Database 290 may contain database object
links to common database objects and views for accessing the
pluggable database dictionary and other system information.

Database Dictionaries 211,221, and 231 are expositive and
illustrative of database dictionaries in a container DBMS but
are not limiting.

Establishing Database Session for a Database

Users access a database of the Container DBMS 200 by
establishing a database session. Before describing how to
establish a database session for a database in the Container
DBMS 200, a further description of database sessions is
useful.

A database session comprises a particular connection
established for a client to a database server, such as a database
instance, through which the client issues a series of requests
(e.g., requests for execution of database statements). The
database server may maintain session state data about the
session. The session state data reflects the current state of the
database session and may contain the identity of the user for
which the database session is established, services used by the
user, instances of object types, language and character set
data, statistics about resource usage for the session, tempo-
rary variable values generated by processes executing soft-
ware within the database session, and storage for cursors and
variables and other information. If a database dictionary has
been attached to the database session, session state for the
database session includes one or more references or links
needed to access the attached database dictionary.

FIG. 3 depicts a procedure comprising steps that are per-
formed particularly for establishing a database session for a
database in a container database. Referring to FIG. 3, at step
310, a database server hosting a container database receives a
connection request, and, in conjunction with the connection
request, parameter values, which include a database identi-
fier. The database identifier may be any information that is
usable to identify a database in Container DBMS 200 for
which access is being requested. In an embodiment, the data-
base identifier may be the name of a database. In another
embodiment, the database identifier may be a database ser-
vice associated with a database.

At step 320, it is determined that the database connection
request is a request for a database session for a database in
Container DBMS 200. This determination may be made by,
for example, determining that the database identifier identi-
fies pluggable database PDA.

US 9,122,644 B2

9

At step 330, in response to the determination that the data-
base connection request is a request for a database in Con-
tainer DBMS 200, a database session for the database is
established. Establishing the database session for the data-
base includes attaching the database dictionary of the data-
base. In the current example, the Database Dictionary 221,
the database dictionary for Pluggable Database PDA 220, is
established as the database dictionary for the database ses-
sion.

Establishing a database session for a user entails more
operations than specifically depicted in FIG. 3. Such opera-
tions include, without limitation, authentication of the user
issuing the connection request and initialization of session
state.

Isolation of Administration

Within Container DBMS 200, privileges of a user may be
isolated to a particular database or a set of databases. The
database dictionary of a database defines users and the
respective user privileges of the users. Defining privileges for
a user in the database dictionary of a database grants the
privileges only for that database, and not for other databases
of the Container DBMS 200. To perform operations on a
database, a user establishes a database session for the data-
base. The user must have privileges defined in the database
dictionary of the database that allow the user to perform the
operations. For example, the user may only add definitions for
database objects to the attached database dictionary, or alter
the definition of a database object already defined by the
attached database dictionary. As a consequence, each data-
base in Container DBMS 200 may be utilized by separate a set
of users that may not access or even know of the other data-
bases in Container DBMS 200.

Administration of a Container DBMS 200 may require
administrative privileges defined in the Root Database 210.
Such administrative privileges include the right (1) to create a
pluggable database, 2) to plug a pluggable database into Con-
tainer DBMS 200, and (3) to allocate Container DBMS 200
resources between databases.

Common Users

In some cases, users of the Container DBMS 200 may need
to access multiple databases of the Container DBMS 200. In
one approach, an administrator may connect to each of the
applicable databases individually and create the user. How-
ever, when the user needs to be created in a large number of
databases, connecting to each database and setting up the user
account can be a very time consuming and tedious process.
Furthermore, if the user’s information needs to be updated
(e.g. changing a password) the administrator would need to
log into each database where the user has been defined and
make the necessary modifications.

For administrative convenience, in an embodiment, Con-
tainer DBMS 200 provides the means to create users from the
Root Database 210 that are common among all databases of
the Container DBMS 200 (“common users”). For conve-
nience, users defined only within a particular pluggable data-
base or the Root Database 210 will be referred to as “local
users”.

FIG. 4 depicts a procedure comprising steps that are per-
formed for establishing a common user of a container data-
base. For the purpose of illustrating clear examples, it will be
assumed that Container DBMS 200 performs the steps of
FIG. 4.

At step 400, the Container DBMS 200 establishes a con-
nection for a user to the Root Database 210. In an embodi-
ment, the Container DBMS 200 establishes the connection in
accordance with the procedure depicted in FIG. 3. In an

10

15

30

40

45

10

embodiment, the user is an administrator or is otherwise a
user with sufficient privileges defined in the Root Database
210 to create common users.

At step 401, the Container DBMS 200 receives a command
to establish a common user for the container database. In an
embodiment, the command specifies at least the name of the
common user and information used to verify the identity of
the user, such as a password. In some embodiments, the
command specifies to create a user common to a subset of the
pluggable databases, rather than all the pluggable databases
in the Container DBMS 200. In such embodiments, the fol-
lowing steps are performed only with respect to the specified
pluggable databases in the subset.

At step 402, the Container DBMS 200 creates the common
user within the Root Database 210. For example, the Con-
tainer DBMS 200 may create an entry in table User_sys 107
of Database Dictionary 211 that defines the user. In some
embodiments, the Container DBMS 200 also creates a local
schema for the common user within the Root Database 210.
For example, the Container DBMS 200 may add an entry in
table Schema_sys 103 that defines a schema corresponding to
the user name supplied at step 402.

At step 403, the Container DBMS 200 propagates the
common user to the pluggable databases. In an embodiment,
the Container DBMS 200 executes the command received at
step 401 against each of the pluggable databases. For
example, as a result of step 403, the Container DBMS 200
may add corresponding entries to the tables of Database Dic-
tionary 221 and Database Dictionary 231 to define the com-
mon user within those databases.

In some embodiments, the Container DBMS 200 propa-
gates a portion the user information to the pluggable data-
bases, but maintains exclusive storage of select user informa-
tion in the Root Database 210. For example, the user’s
password may be stored exclusively in the Root Database 210
for security reasons. In such cases, when a common user
attempts to connect to a pluggable database, the Container
DBMS 200 verifies the common user using the password
stored in Database Dictionary 211. For example, the pass-
word attribute of the user tables for the pluggable databases
may contain one or more references to where the password for
the common user is stored in within the Root Database 210.

As aresult of FIG. 4, an administrator or other privileged
user is able to create, from the Root Database 210, a common
user on all databases, without the need to separately connect
to each database. However, although the common user may
share the same user name and verification information across
the databases, the privileges assigned to the common user and
the schema(s) defining the database objects owned by the
common user may differ between the pluggable databases.
For example, the common user may wind up owning Local
Object A in Pluggable Database PDA 220 and Local Object B
in Pluggable Database PDB 230. Thus, while connected to
Pluggable Database PDA 220, the common user can access
Local Object A, but not Local Object B. In order to allow the
common user to access the same object across databases, the
object can be created as a common object as described above.

In an embodiment, to remove or modify a common user,
the Container DBMS 200 follows the same procedure as F1G.
4, but instead modifies or removes the common user’s entries
in the appropriate tables of the Root Database 210 at step 402
and propagates those changes to the pluggable databases at
step 403.

In some embodiments, in the event that a new pluggable
database is added to the container database, the Container
DBMS 200 propagates each of the common users from the
Root Database 210 to the new pluggable database. In some

US 9,122,644 B2

11

cases, a common user may be created while one or more of the
pluggable databases are closed or otherwise inaccessible.
Thus, in an embodiment, when a pluggable database is
reopened, the Container DBMS 200 propagates the common
users created while the pluggable database was closed.
Common Roles

As mentioned earlier, roles represent bundles of privileges.
When a user is assigned a role, that user receives each of the
privileges associated with the role. Thus, administrators are
saved from the inconvenience of having to separately grant
each of the privileges associated with the role for every appli-
cable user. However, in the context of a container database,
the administrator may find themselves recreating the same
role in many different databases. For example, the adminis-
trator may define a common role for low-ranking users who
are only allowed to query the pluggable database objects (e.g.
tables) and a role for high-ranking users who are also allowed
to modify database objects. In order to use those two roles in
every database, the administrator can separately connect to
each database of the Container DBMS 200 and add the roles
to the corresponding database dictionary. However, this
would result in the creation of local roles that are completely
independent of each other and would need to be managed
individually one database at a time.

In some embodiments, to save administrators from this
time-consuming task, the Container DBMS 200 supports
roles that are shared across the databases of the Container
DBMS 200 (“common roles”). For convenience, roles
defined only within a particular pluggable database or the
Root Database 210 will be referred to as “local roles”.

FIG. 5 depicts a procedure comprising steps that are per-
formed for establishing a common role in a container data-
base. For the purpose of illustrating clear examples, it will be
assumed that Container DBMS 200 performs the steps of
FIG. 5.

At step 500, the Container DBMS 200 establishes a con-
nection for a user to the Root Database 210. In an embodi-
ment, the Container DBMS 200 establishes the connection in
accordance with the procedure depicted in FIG. 3. In an
embodiment, the user is an administrator or is otherwise a
user with sufficient privileges defined in the Root Database
210 to create common roles.

Atstep 501, the Container DBMS 200 receives a command
to create a common role in the container database. In an
embodiment, the command specifies at least the name of the
common role and one or more privileges to be included in the
common role. In some embodiments, in addition to the one or
more privileges, the command may also specify another com-
mon role defined in the Root Database 210, in which case the
privileges associated with the other common role may be
interpreted by the Container DBMS 200 as included within
the one or more privileges. In some embodiments, the com-
mand specifies to create a role common to a subset of the
pluggable databases, rather than all the pluggable databases
in the Container DBMS 200. In such embodiments, the fol-
lowing steps are performed only with respect to the specified
pluggable databases in the subset.

At step 502, the Container DBMS 200 creates the common
role within the Root Database 210. For example, the Con-
tainer DBMS 200 may create an entry in table Role_sys 108
of Database Dictionary 211 that defines the role.

At step 503, the Container DBMS 200 propagates the
common role to the pluggable databases. In an embodiment,
the Container DBMS 200 executes the command received at
step 501 against each of the pluggable databases. For
example, as a result of step 403, the Container DBMS 200
may add corresponding entries to the tables of Database Dic-

10

15

20

25

30

35

40

45

50

55

60

65

12

tionary 221 and Database Dictionary 231 to define the com-
mon role within those databases.

Inan embodiment, to remove or modify acommonrole, the
Container DBMS 200 follows the same procedure as FIG. 4,
but instead modifies or removes the common role’s entries in
the appropriate tables of the Root Database 210 at step 402
and propagates those changes to the pluggable databases at
step 403.

In some embodiments, in the event that a new pluggable
database is added to the container database, the Container
DBMS 200 propagates each of the common roles from the
Root Database 210 to the new pluggable database. In some
cases, a common role may be created while one or more ofthe
pluggable databases are closed or otherwise inaccessible.
Thus, in an embodiment, when a pluggable database is
reopened, the Container DBMS 200 propagates the common
roles created while the pluggable database was closed.
Commonly-Granted Privileges and Roles

In some embodiments, the Container DBMS 200 allows
privileges to be granted either commonly or locally. When
privileges are granted commonly, the associated rights are
granted for every database of the Container DBMS 200.
When privileges are granted locally, the associated rights are
granted only for the particular database to which the grantor
is connected.

In some embodiments, privileges can only be commonly-
granted from the Root Database 210. In addition, a privilege
can only be commonly-granted to a common user/role and, in
cases of privileges on an object, the object must be a common
object. Since local objects, local users, and local roles are
only defined within a particular database, the dictionaries of
the other databases may not define an equivalent structure to
which the Container DBMS 200 may apply the commonly-
granted privilege.

In an embodiment, when a privilege is commonly-granted
to a common user in the Root Database 210, the Container
DBMS 200 propagates the privilege to the tables that define
users in the database dictionaries of the pluggable databases.
Similarly, when a commonly-granted privilege is revoked,
removal of the privilege is also propagated to the pluggable
databases. However, when a privilege is granted or revoked
locally, the privilege is only added to or removed from the
table that defines users in the database dictionary of the par-
ticular database to which the grantor or revoker of the privi-
lege is connected. In some embodiments, the Container
DBMS 200 supports commonly-granting privileges within a
subset of the pluggable databases, rather than all the plug-
gable databases in the Container DBMS 200.

For example, a privilege to execute DDL commands may
be commonly-granted to a common user from the Root Data-
base 210. The commonly-granted privilege gives the com-
monuser the right to execute DDL commands in any database
to which the common user is connected. However, in another
scenario, the same privilege may be granted locally at Plug-
gable Database PDA 220, thus only granting the common
user the right to execute DDL commands in Pluggable Data-
base PDA 220, unless the same privilege is separately granted
in other databases.

In an embodiment, common roles may be granted privi-
leges commonly or locally. Commonly-granting a privilege
to a common role adds the privilege to the common role in
every database ofthe Container DBMS 200. Locally-granting
a privilege to a common role only adds the privilege to the
common role in the database to which the grantor is con-
nected. As aresult, auser assigned a common role will always
receive the common role’s commonly-granted privileges,
regardless of the database in which the common role was

US 9,122,644 B2

13

granted. However, in some databases, the common role may
also grant the user additional locally-granted privileges.

For example, assume common role A is commonly-granted
privilege P1 and locally-granted privilege P2 in Pluggable
Database PDB 230. When common role A is granted to a user
in Pluggable Database PDA 220, the user only receives the
commonly-granted privilege P1. However, when common
role A is granted to a user in Pluggable Database PDB 230, the
user receives the commonly-granted privilege P1 and also the
locally-granted privilege P2.

In an embodiment, privileges can be commonly granted to
or revoked from common roles only from the Root Database
210. When a privilege is commonly granted to or revoked
from a common role at the Root Database 210, the Container
DBMS 200 propagates the resulting changes to the role tables
in the database dictionaries of the pluggable databases. In
addition, when a locally-granted privilege is given to or
removed from a common role, the Container DBMS 200 adds
or removes the privilege from the role table in the database
dictionary of only the database to which the grantor or revoker
is connected.

In an embodiment, common roles may be granted either
commonly or locally. However, a common role can only be
commonly-granted to a common user and only from the Root
Database 210. When a common role is commonly-granted to
a common user from the Root Database 210, the Container
DBMS 200 propagates the common user’s grant of the com-
mon role to each of the pluggable databases. However,
although the common role is granted to the common user in
all databases, the actual privileges that the common user
receives in each pluggable database will vary depending on
the privileges commonly-granted and locally-granted to the
common role. When a commonly-granted common role is
revoked, the Container DBMS 200 propagates the revocation
to the pluggable databases. When a common role is granted to
or revoked from a user locally, the Container DBMS 200 only
adds or removes the role for the user at the database to which
the grantor or revoker is connected. In some embodiments,
the Container DBMS 200 supports commonly-granting roles
to a common user in a specified subset of the pluggable
databases, rather than all the pluggable databases in the Con-
tainer DBMS 200.

Transporting Pluggable Database

The architecture of a container DBMS greatly facilitates
transporting databases between database servers and/or
DBMSs. The tablespace files and the dictionary store may be
moved between environments of container DBMSs using
readily available mechanisms for copying and moving files.
The tablespace files, along with one or more dictionary files,
are referred to herein collectively as a transportable database
package.

Once the transportable database package of a pluggable
database is moved to the environment of the target container
database the pluggable database can be plugged into the target
container database. In an embodiment, plugging in the plug-
gable database is performed in response to receiving a DDL
command to plug in the pluggable database, the DDL com-
mand also identifying the transportable database package. In
response to receiving the DDL command, the container
DBMS plugs in the pluggable database. Plugging in the plug-
gable database entails such operations as updating the root
database dictionary to define the pluggable database, such
updates including, for example, adding a record to
Database_sys 203. Error checking is also performed. For
example, checks are performed to ensure that the name of the
pluggable database is unique within the container database

10

15

20

25

30

35

40

45

50

55

60

65

14

and that tablespace files are not already being used for other
tablespaces in the container database.
Namespace Division

In some embodiments, the Container DBMS 200 divides
the namespace between common users and roles, and local
users and roles. For example, the Container DBMS 200 may
require the names of common users and roles to start with a
particular substring, such as “C##”.

One reason that the Container DBMS 200 may divide the
namespace is to ensure that the names of local users and roles
created in the pluggable databases will not conflict with the
names of common users and roles defined in the container
database.

For example, assume that a new pluggable database is
added to the container database, but the new pluggable data-
base contains a pre-existing local user that has the same name
as a common user already defined for the container database.
When the Container DBMS 200 attempts to propagate the
common user to the new pluggable database, a conflict will be
detected since the database dictionary of the new pluggable
database already contains an entry with the same name. Since
applications or other users of the new pluggable database may
rely upon the local user that has already been defined, the
Container DBMS 200 may be unable to modity or change the
local user without causing critical issues. The Container
DBMS 200 may even need to keep the new pluggable data-
base locked until an administrator can resolve the conflict.
Thus, by dividing the namespace, the Container DBMS 200
avoids potential conflicts, provided that the users and roles
adhere to the naming convention.

Abandoned Common Users and Roles as a Result of Trans-
port

Transporting a pluggable database from a source container
database to a target container database may cause a common
user to become “abandoned”. An abandoned common user
occurs when the pluggable database stores metadata and/or
data (e.g. schema, roles. privileges, data objects, etc.) for a
common user that does not exist in the target container data-
base. Opening access to the database for an abandoned com-
monuser can be problematic. For example, due to the division
of the namespace, an abandoned common user cannot be
easily converted into a local user. If the name of the common
user is kept the same, the naming convention is violated. On
the other hand, if the name is modified, users or procedures
that rely on the common user’s name will cease to function
properly. As another example, for security reasons, the infor-
mation to verify the common user (e.g. the common user’s
password) may have only been stored in the root database of
the source container database. Thus, when the pluggable data-
base was transported to the target container database, the
common user’s verifying information was left behind in the
source container database.

In some embodiments, the Container DBMS 200 locks the
accounts of abandoned common users until an administrator
resolves the issue. Locking the common user’s account may
not necessarily render the common user’s data and metadata
unavailable. For example, the Container DBMS 200 may not
allow the abandoned common user to connect to the plug-
gable database, but may still allow other users who have been
granted privileges to act on the common user’s schema or
database objects the ability to exercise those privileges.

In some embodiments, abandoned common users can be
recovered by recreating the common user in the root database
of the target database. For example, an administrator may
instruct the Container DBMS 200 to create a common user in
the root database with the same name as the abandoned com-
mon user and a new password. When the Container DBMS

US 9,122,644 B2

15

200 attempts to propagate the common user, the Container
DBMS 200 detects that the pluggable database already con-
tains an entry for the common user, and leaves the common
user’s metadata in place. The Container DBMS 200 then
unlocks the common user’s account and allows the common
user to connect to the pluggable database using the new
password.

For the same reasons that a common user may be aban-
doned after transport, a common role may also become aban-
doned. In an embodiment, when the Container DBMS 200
detects an abandoned common role, the pluggable database is
opened in a restricted mode. In the restricted mode, only users
with administrative privileges are able to connect to the plug-
gable database in order to perform clean up. This can take the
form of creating a local role, granting to the local role the
same privileges as were granted to the abandoned role, grant-
ing the new local role to the grantees of the abandoned com-
mon role, and removing the abandoned common role from the
pluggable database. As an alternative, the abandoned com-
mon role can be recreated from the root database of the target
container database.

In some embodiments, after transport, the root database of
the target container database may already define a common
user with the same name as a common user on the pluggable
database. In such events the Container DBMS 200 considers
the common users to be the same entity and allows the com-
mon user to connect to the pluggable dataset using the pass-
word already defined in the root database.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 6 is a block diagram that illustrates a
computer system 600 upon which an embodiment of the
invention may be implemented. Computer system 600
includes a bus 602 or other communication mechanism for
communicating information, and a hardware processor 604
coupled with bus 602 for processing information. Hardware
processor 604 may be, for example, a general purpose micro-
processor.

Computer system 600 also includes a main memory 606,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 602 for storing information and
instructions to be executed by processor 604. Main memory
606 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 604. Such instructions, when stored
in non-transitory storage media accessible to processor 604,
render computer system 600 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

20

30

40

45

50

16

Computer system 600 further includes a read only memory
(ROM) 608 or other static storage device coupled to bus 602
for storing static information and instructions for processor
604. A storage device 610, such as a magnetic disk or optical
disk, is provided and coupled to bus 602 for storing informa-
tion and instructions.

Computer system 600 may be coupled via bus 602 to a
display 612, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 614, includ-
ing alphanumeric and other keys, is coupled to bus 602 for
communicating information and command selections to pro-
cessor 604. Another type of user input device is cursor control
616, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 604 and for controlling cursor movement
ondisplay 612. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.

Computer system 600 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 600 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 600 in response to processor
604 executing one or more sequences of one or more instruc-
tions contained in main memory 606. Such instructions may
be read into main memory 606 from another storage medium,
such as storage device 610. Execution of the sequences of
instructions contained in main memory 606 causes processor
604 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 610. Volatile media
includes dynamic memory, such as main memory 606. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
602. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 604
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 600 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 602. Bus 602 carries the data to main memory 606,

US 9,122,644 B2

17

from which processor 604 retrieves and executes the instruc-
tions. The instructions received by main memory 606 may
optionally be stored on storage device 610 either before or
after execution by processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface
618 provides a two-way data communication coupling to a
network link 620 that is connected to a local network 622. For
example, communication interface 618 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 618 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 618 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data equip-
ment operated by an Internet Service Provider (ISP) 626. ISP
626 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 628. Local network 622
and Internet 628 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital
data to and from computer system 600, are example forms of
transmission media.

Computer system 600 can send messages and receive data,
including program code, through the network(s), network
link 620 and communication interface 618. In the Internet
example, a server 630 might transmit a requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618.

The received code may be executed by processor 604 as it
is received, and/or stored in storage device 610, or other
non-volatile storage for later execution.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A method, comprising:

a database server managing a container database that com-
prises one or more pluggable databases and a root data-
base;

the database server establishing a session to the root data-
base for a first user;

the database server receiving one or more instructions
through the session specifying to create a second user to
be common across each of the one or more pluggable
databases and the root database;

in response to receiving the one or more instructions, the
database server:

10

15

20

25

30

35

40

45

50

60

65

18

storing metadata representing the second user in the root
database, and

storing at least a portion of the metadata representing the
second user in each pluggable database of the one or
more pluggable databases;

wherein the method is performed by one or more comput-

ing devices.

2. The method of claim 1, wherein each database of the
container database stores a respective database dictionary and
the metadata represents one or more database dictionary
entries.

3. The method of claim 1, further comprising:

the database server receiving second one or more instruc-

tions through the session specifying to commonly grant

the second user one or more privileges across each ofthe

one or more pluggable databases and the root database;

in response to receiving the second one or more instruc-

tions, the database server:

modifying the metadata representing the second user in
the root database to indicate that the second user pos-
sesses the one or more privileges in the root database,
and

modifying the portion of the metadata representing the
second user stored in each respective pluggable data-
base of the one or more pluggable databases to indi-
cate that the second user possesses the one or more
privileges in the respective pluggable database.

4. The method of claim 1, further comprising:

the database server receiving a second one or more instruc-

tions through the session specifying to create a role to be
common across each of the one or more pluggable data-
bases and the root database;

in response to receiving the second one or more instruc-

tions, the database server storing metadata representing
the role in the root database and the one or more plug-
gable databases.

5. The method of claim 4, further comprising:

the database server receiving third one or more instructions

through the session specifying to commonly grant the
role one or more privileges across each of the one or
more pluggable databases and the root database;

in response to receiving the third one or more instructions,

the database server modifying the metadata representing
the role stored in each respective database of the root
database and the one or more pluggable databases to
indicate that the role possesses the one or more privi-
leges in the respective database.

6. The method of claim 4, further comprising:

the database server receiving third one or more instructions

through the session specifying to commonly grant the
second user the role across each of the one or more
pluggable databases and the root database;

in response to receiving the third one or more instructions,

the database server:

modifying the metadata representing the second user in
the root database to indicate that the second user pos-
sesses the role in the root database, and

modifying the portion of the metadata representing the
second user stored in each respective pluggable data-
base of the one or more pluggable databases to indi-
cate that the second user possesses the role in the
respective pluggable database.

7. The method of claim 1, wherein the metadata for the
second user contains information for verifying identity of the
second user.

8. The method of claim 7, wherein the information for
verifying the identity of the second user is not included in the

US 9,122,644 B2

19

portion of the metadata for the second user stored in each
particular pluggable database of the one or more pluggable
databases.
9. The method of claim 8, further comprising the database
server establishing a session to a particular pluggable data-
base of the one or more pluggable databases for the second
user based at least in part on the information for verifying the
identity of the second user contained in the metadata repre-
senting the second user stored in the root database.
10. The method of claim 1, further comprising:
the database server establishing a second session to a par-
ticular pluggable database of the one or more pluggable
databases for the first user;
the database server receiving second one or more instruc-
tions through the second session specifying to locally
create a third user;
in response to receiving the second one or more instruc-
tions, the database server storing metadata representing
the third user only in the particular pluggable database.
11. A non-transitory computer-readable medium storing
sequences of instructions which when executed by one or
more processors, cause the one or more processors to per-
form:
a database server managing a container database that com-
prises one or more pluggable databases and a root data-
base;
the database server establishing a session to the root data-
base for a first user;
the database server receiving one or more instructions
through the session specifying to create a second user to
be common across each of the one or more pluggable
databases and the root database;
in response to receiving the one or more instructions, the
database server:
storing metadata representing the second user in the root
database, and

storing at least a portion of the metadata representing the
second user in each pluggable database of the one or
more pluggable databases.
12. The non-transitory computer-readable medium of
claim 11, wherein the sequences of instructions further
include instructions which, when executed by said one or
more processors, cause each database of the container data-
base to store a respective database dictionary and the meta-
data represents one or more database dictionary entries.
13. The non-transitory computer-readable medium of
claim 11, wherein the sequences of instructions further
include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form:
the database server receiving second one or more instruc-
tions through the session specifying to commonly grant
the second user one or more privileges across each of the
one or more pluggable databases and the root database;
in response to receiving the second one or more instruc-
tions, the database server:
modifying the metadata representing the second user in
the root database to indicate that the second user pos-
sesses the one or more privileges in the root database,
and

modifying the portion of the metadata representing the
second user stored in each respective pluggable data-
base of the one or more pluggable databases to indi-
cate that the second user possesses the one or more
privileges in the respective pluggable database.

14. The non-transitory computer-readable medium of
claim 11, wherein the sequences of instructions further

20

25

30

35

40

45

50

55

60

20

include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form:

the database server receiving second one or more instruc-

tions through the session specifying to create a role to be
common across each of the one or more pluggable data-
bases and the root database;

in response to receiving the second one or more instruc-

tions, the database server storing metadata representing
the role in the root database and the one or more plug-
gable databases.

15. The non-transitory computer-readable medium of
claim 14, wherein the sequences of instructions further
include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form:

the database server receiving third one or more instructions

through the session specifying to commonly grant the
role one or more privileges across each of the one or
more pluggable databases and the root database;

in response to receiving the third one or more instructions,

the database server modifying the metadata representing
the role stored in each respective database of the root
database and the one or more pluggable databases to
indicate that the role possesses the one or more privi-
leges in the respective database.

16. The non-transitory computer-readable medium of
claim 14, wherein the sequences of instructions further
include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form:

the database server receiving third one or more instructions

through the session specifying to commonly grant the
second user the role across each of the one or more
pluggable databases and the root database;

in response to receiving the third one or more instructions,

the database server:

modifying the metadata representing the second user in
the root database to indicate that the second user pos-
sesses the role in the root database, and

modifying the portion of the metadata representing the
second user stored in each respective pluggable data-
base of the one or more pluggable databases to indi-
cate that the second user possesses the role in the
respective pluggable database.

17. The non-transitory computer-readable medium of
claim 11, wherein the metadata for the second user contains
information for verifying identity of the second user.

18. The non-transitory computer-readable medium of
claim 17, wherein the information for verifying the identity of
the second user is not included in the portion of the metadata
for the second user stored in each particular pluggable data-
base of the one or more pluggable databases.

19. The non-transitory computer-readable medium of
claim 18, wherein the sequences of instructions further
include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form the database server establishing a session to a particular
pluggable database of the one or more pluggable databases
for the second user based at least in part on the information for
verifying the identity of the second user contained in the
metadata representing the second user stored in the root data-
base.

20. The non-transitory computer-readable medium of
claim 11, wherein the sequences of instructions further

US 9,122,644 B2

21

include instructions, that when executed by said one or more
processors, cause the one or more processors to further per-
form:
the database server establishing a second session to a par-
ticular pluggable database of the one or more pluggable
databases for the first user;
the database server receiving second one or more instruc-
tions through the second session specifying to locally
create a third user;
in response to receiving the second one or more instruc-
tions, the database server storing metadata representing
the third user only in the particular pluggable database.

#* #* #* #* #*

10

22

